科研人员在全固态电池锂枝晶生长机制以及抑制领域取得新进展
全固态锂金属电池具有本征安全性高、能量密度高等优势,但由于锂枝晶生长问题,固态电解质只能在相当低的电流密度下运行,这严重限制了全固态锂金属电池的应用。因此,发展抑制锂枝晶诱导固态电解质失效的新策略、优化固态电解质微观结构以实现高电流密度稳定长效循环对于全固态锂金属电池的发展至关重要。
针对上述问题,西安交通大学材料/化工联合研究团队基于前期总结提出的两种锂枝晶刺穿固态电解质导致电池失效机理,即机械穿刺机理(Mechanical penetration mechanism)和输运促进机理(Transport-facilitated mechanism),针对性提出“迂回与缓冲”(Detour and Buffer)的应对策略,并采取颗粒级配的方法设计制备了晶粒尺寸双峰分布的固态电解质来实现此目的。这种晶粒尺寸双峰分布的微观结构,平均粒径约5µm的细晶粒包围着粗晶粒(平均粒径50-60µm),锂渗透的驱动力被高密度晶界和细小分布的孔隙不断消耗;同时,大晶粒能够有效增加锂枝晶生长路径的曲折性,从而有效抑制与延缓固态电解质的失效。通过这种双峰分布的固态电解质,协同发挥粗晶与细晶的优势,实现了“迂回与缓冲”效应。在不对界面进行任何额外修饰的情况下,具有双峰微结构的锂镧锆氧固态电解质可在电流密度高于1 mA·cm-2的条件下稳定循环2000多个小时,并可在电流密度为2 mA·cm-2的条件下成功循环100小时以上。该结果相比于传统的不具备双峰微结构的锂镧锆氧固态电解质,首次实现了在高于1 mA·cm-2电流密度的室温稳定循环,并将稳定循环时长提升10倍。同时该结果高于目前绝大多数精心修饰Li/LLZO界面后的锂镧锆氧固态电解质所能承受的循环电流密度极限和稳定循环时长极限。
上述研究结果为固态电解质微观结构设计和提高全固态锂电池的循环稳定性提供了重要指导。相关研究成果以《双峰晶粒协同大幅提升固态电解质循环稳定性》(Solid Electrolyte Bimodal Grain Structures for Improved Cycling Performance)为题发表于《先进材料》(Advanced Materials)。