好望角:让你的每次点击都有价值:byteclicks.com | 搜索引擎正在被AI污染信息源,中文优质信息越来越少了 |

高性能光电探测器

最前沿
中国团队在硅带隙以下高性能有机光电探测方面获进展

近红外光响应的有机光电探测器(OPDs)具有光电性质易调控、可大面积柔性印刷制备、可室温工作等优点,在可穿戴智能设备、柔性电子皮肤、生物医学成像等新兴领域具有广阔的应用前景。然而,高性能的超窄带隙有机半导体材料的设计合成较为困难,目前强近红外Ⅱ区(1000-1700 nm),尤其是硅带隙以下波段(>1100 nm)响应的有机光电探测器鲜有报道,且比探测率(D*)普遍低于商用无机探测器。

最前沿
新型超宽谱光电探测器上的研究进展

近日, Science Advances发表了题为“Broadband and photovoltaic THz/IR response in the GaAs-based ratchet photodetector”的研究工作(Sci. Adv. 8, eabn2031 (2022))。该论文提出了一种基于GaAs/AlxGa1-xAs异质结的量子棘轮结构。这种结构综合利用了电泵浦实现的热载流子注入效应、自由载流子吸收和从轻、重空穴带到自旋轨道分裂带的光跃迁等多种吸收机制,突破了界面势垒的限制,实现了从近红外到太赫兹波段(4-300太赫兹)的超宽谱光响应。

最前沿
物理所等实现二维原子晶体硒化铟高性能光电探测器

二维层状原子晶体材料的物理性能(如带隙等)随厚度减小而变化,在光子和光电子器件的应用中具有广阔前景。光电探测器作为重要的光电应用单元器件,引发学界广泛关注,近年来基于二维原子晶体材料的光电晶体管成为最主要的关注对象之一。

最前沿 电子信息
超低暗电流高性能近红外硅基光电探测器研究获进展

以光为信息载体实现通信的光通信技术,凭借优异的速度传输性能和强大的信息容量成为现代社会最重要的技术之一。其中硅光子学,与成熟的互补金属氧化物半导体(CMOS)制造工艺兼容,并且伴随着各类有源、无源的硅基光子器件的实现逐渐成为短程光通信中最具前景的技术。近日,中国科学院物理研究所研究人员硅基肖特基光电探测器研究方面取得进展。

最前沿 电子信息
研究人员开发新型超高效宽带光电探测器,比市面上最小设备薄1000倍

研究人员已经开发出一种世界上第一台能够看到整个光谱的光电探测器,光电探测器通过将光携带的信息转换为电信号工作,并被广泛用于从游戏机到光纤通信,医学成像和运动探测器的技术中。当前,光电探测器无法在一种设备中感测超过一种颜色。RMIT大学研究人员开发的新型超高效宽带光电探测器比最小的市售光电探测器装置至少薄1000倍。在该技术的重大飞跃中,该原型设备还可以看到紫外光和近红外光之间的所有阴影,这为在同一芯片上集成电气和光学组件提供了新机会。

最前沿 电子信息
研究人员报道一种基于光谱投影的颜色感知器件

光信号是宇宙空间中最重要的信息载体之一,人们对能探测光信号的器件(即光探测器)的研究由来已久。光探测器的应用涉及到工业生产及日常生活的方方面面。随着后摩尔时代的来临,万物互联的趋势对光探测器件提出了更高的性能及功能上的要求。然而,受限于其工作原理,现有的光探测器仅仅只能探测光信号的光强(光功率密度),而不能获得光信号的颜色或光谱信息。

最前沿
上海技物所低维材料红外探测器件的非对称光耦合研究获进展

近日,中国科学院上海技术物理研究所研究员周靖、陈效双和陆卫团队提出了等离激元纳米谐振腔非对称集成的石墨烯红外探测器件,揭示了该复合结构器件高对比度非对称光耦合的原理,验证了基于非对称光耦合突破金属-低维材料-金属探测结构的两大瓶颈问题,实现了泛光照射下显著的自驱动光响应,超越常规的等离激元耦合光栅1个量级。

最前沿
2.5-5um波段红外天光背景测量仪研制成功

由中国科学技术大学近代物理系“核探测与核电子学国家重点实验室” 王坚课题组带领的光电探测技术团队经过两年的攻关,根据InSb探测器在2.5-5um波段上高响应的性能,利用线性可变滤波片在此波段线性可变的特点完成了此波段上连续扫描观测的红外天光背景测量仪。

最前沿 电子信息
天大研究团队发前瞻性文章对拓扑光电探测的展望:基于半金属的高性能光电探测

光电探测器是现代通信和传感系统中重要的光电子器件,与我们的日常生活息息相关。在可见光和近红外光波段,基于第一代和第二代半导体材料技术与工艺的商用光电探测器已经实现了高性能、高集成度和低廉的制造成本。目前,光电探测器的主要瓶颈在于探测中远红外波段的电磁辐射。近日天大研究团队发前瞻性文章对拓扑光电探测的展望:基于半金属的高性能光电探测

最前沿 电子信息
美国NIST将微波信号的频率稳定度提高了100倍

一直以来,研究人员都致力于提高微波信号的频率稳定度,以实现电子设备或系统的高精度可靠运行。近日,美国国家标准与技术研究院(NIST)的研究人员利用自主研制的最精准镱原子光晶格钟、高性能光电探测器和光学频率梳,获得了频率不稳定度为10-18的微波信号,该微波信号的频率稳定度较现今最精准铯原子喷泉钟的提高了100倍。该项研究成果标志着电子学技术实现了跨越式发展,可使远距离时间传递和导航定位系统更精确,通信系统更可靠,雷达和天文学成像分辨率更高。