好望角:让你的每次点击都有价值:byteclicks.com | 搜索引擎正在被AI污染信息源,中文优质信息越来越少了 |

中国团队提出迄今最高并行度的神经形态计算方案

《科学》杂志在今年4月份提出了125个最具挑战性的前沿科学问题,其中信息科学领域的首个问题便是:计算机处理速度是否有上限?(Is there an upper limit to computer processing speed?)在数字计算机中,处理器速度的上限很大程度上由时钟频率决定,而时钟频率的增加实质上受逻辑状态(“0”与“1”)翻转速度的限制。进一步提高处理器的速度将导致严重的过热问题,这也解释了为什么十多年来,处理器的时钟频率已经停止了增长,这也导致传统计算机在有着大规模计算需求的物联网、自动驾驶等应用场景中面临巨大挑战。

一种应对的思路是利用并行计算技术,通过提高并行度来提升处理速度的上限。常规的多核、多芯片、多板卡并行计算系统均采用“空间换时间”的妥协方式来提高算力,如何利用新的计算硬件和计算方案来实现大规模并行计算,从而实现信息处理速度的不断提升,是未来计算领域一个广受关注的议题。

近日,南京大学缪峰教授合作团队利用连续时间的信息加载方式和频分复用技术,首次提出并实验验证迄今最高并行度的神经形态计算方案。

中国团队提出迄今最高并行度的神经形态计算方案

利用忆阻器交叉阵列可实时连续地处理动态信息的特点,该团队提出利用时间上连续的信号作为信息载体,引入频率维度,提出了迄今最高并行度的神经形态计算方案。作为验证,团队利用两个级联的忆阻器交叉阵列,成功实现了对16张字母图片的并行识别。该工作为回答“计算机处理速度是否有上限”的前沿科学问题提供了新的思路,并为利用大规模并行计算技术在神经形态计算领域实现应用提供了科学基础。

研究团队基于忆阻器交叉阵列可以在时间上连续处理信息的特性,提出了在频域上采用频分复用实现并行计算的方式。在该方式中,如果将单一频率的连续信号输入忆阻器阵列进行计算,输出的信号会维持单一频率;如果将多个单频率信号叠加合成为一个多频率信号,并输入忆阻器阵列进行计算,输出的信号会具有多个频率。我们选取了一系列正弦波叠加后的信号作为忆阻器交叉阵列的输入信号,该信号的频谱会出现多个离散的峰,每个峰均可被用来加载数据。

值得一提的是,在该工作中,虽然团队利用忆阻器阵列作为硬件展示,但是该频分复用计算技术可以广泛应用于相变存储器、磁隧穿结存储器、浮栅器件等其他神经形态计算硬件上。该工作为未来人工智能时代,填补海量数据计算需求所面临的算力缺口提供了可行的技术途径。

相关研究成果以《Scalable massively parallel computing using continuous-time data representation in nanoscale crossbar array》(利用连续时间数据表达在纳米尺度交叉阵列上实现可扩展大规模并行计算)为题于 2021年7月8日发表在《自然-纳米技术》(Nature Nanotechnology)期刊上。

该工作得到国家杰出青年科学基金、国家自然科学基金重点项目、中科院先导B等项目的资助,以及固体微结构物理国家重点实验室、人工微结构科学与技术协同创新中心等支持。获取更多前沿科技 研究进展 访问:https://byteclicks.com

上一篇:

下一篇:


标签