中科院生物物理所等开发出新型生物力显微镜
近期,中国科学院生物物理研究所研究员李栋课题组、牛津大学教授Marco Fritzsche课题组和伦敦大学学院博士后Emad Moeendarbary课题组合作,在Nature Communications上,同期发表题为Astigmatic traction force microscopy (aTFM)和Two-dimensional TIRF-SIM-traction force microscopy (2D TIRF-SIM-TFM)的研究论文。研究人员提出了两种新型生物力显微成像方法:像散牵引力结构光照明超分辨显微镜(aTFM-SIM)和二维全反射结构光超分辨牵引力显微镜(2D TIRF-SIM-TFM),可对细胞生命活动过程中与周围环境的相互作用力进行二维或三维、高速、长时程、超分辨率观测,并利用这两种技术研究了大鼠嗜碱细胞白血病(RBL)细胞免疫激活和哺乳动物细胞迁移等过程中的作用力,以及其与细胞内微丝骨架动态形变的关联。
生物力学(mechanobiology)是研究生命活动中相关力学特性的学科。细胞的生物力学特性与生命活动的一些功能相关,如肿瘤免疫过程、器官的衰老、皮肤和伤口愈合、血管形成、淋巴功能、骨骼、神经元和眼睛活动等生命过程。这些微观力学过程通常发生在亚微米、皮牛和亚秒尺度。牵引力显微镜(traction force microscopy)是最广泛应用于生物力学研究的技术之一,其利用弹性物质表面的荧光微球探针观测细胞和弹性物质互作过程中的微观作用力。然而,传统的牵引力显微镜受限于获取微球位移的精度和速度,只能以稀疏的荧光微球作为探针进行慢速的微米尺度二维观测,应用范围受限。
针对传统牵引力显微镜只能二维观测的缺点,基于李栋课题组开发的三维结构光超分辨显微镜(3D-SIM)对荧光微球探针和生物样品进行超分辨观测,高精度确定荧光微球的三维位置,李栋和Marco Fritzsche团队合作,已开发完成第一代三维牵引力显微镜(3D-SIM-TFM,Nano Letters,2019, 19(7): 4427-4434)。由于3D-SIM-TFM通过多层扫描得到微球的三维位置坐标,三维生物力测量的速度依仍受限。针对该问题,研究团队提出基于柱透镜像散的力追踪显微成像方法aTFM-SIM(图1)。aTFM-SIM无需机械扫描仅单次曝光即可高精度追踪荧光微球探针的三维位置,从而计算出细胞表面三维作用力分布。aTFM-SIM的时间分辨率和轴向力追踪精度比3D-SIM-TFM分别提高5倍和10倍。研究团队进一步利用aTFM-SIM以高时、空和力精度观测了RBL细胞的免疫反应过程(图2),以及宫颈癌细胞(HeLa)的贴壁伸展过程。
aTFM-SIM可有效研究微米尺度、秒量级和几十皮牛大小微观力学互作过程,但是生命活动过程中也存在大量更快速和更微小的微观力学作用,并且使用二维成像也能观测部分生命活动过程。为了进一步提升观测的时空精度,研究人员使用全反射结构光超分辨显微镜(TIRF-SIM)和牵引力显微镜相结合的方式,开发出2D-TIRF-SIM-TFM显微成像方法;利用粒子图像测速(PIV)算法取代传统的单颗粒追踪算法分析荧光微球探针的位移,可分析更密集的荧光微球探针,微球密度提升15~20倍,最终可有效探测几十纳米尺度、亚秒量级和皮牛大小的微观力学互作。和传统牵引力显微镜相比,2D-TIRF-SIM-TFM的空间和时间分辨率分别提升2倍和10倍以上。研究人员观测发现,2D-TIRF-SIM-TFM可有效解析原代鲑鱼角质细胞迁徙过程中的类旋涡状动态互作,而传统牵引力显微镜却不能(图3)。
论文1(aTFM-SIM)的共同通讯作者为Emad Moeendarbary、李栋和Marco Fritzsche,生物物理所副研究员李迪、牛津大学博士后Huw Colin-York和博士生Liliana Barbieri、伦敦大学学院博士后Yousef Javanmardi为论文的共同第一作者,生物物理所博士后郭玉婷为论文第二作者。论文2(2D-TIRF-SIM-TFM)的共同通讯作者为李栋和Marco Fritzsche,牛津大学博士生Liliana Barbieri、博士后Huw Colin-York和博士后Kseniya Korobchevskaya为论文的共同第一作者,李迪为论文第二作者。研究工作得到国家自然科学基金委、科学技术部、中科院、中国博士后科学基金的资助。

图1.aTFM-SIM生物力测量方法示意图

图2.aTFM-SIM活细胞成像观测RBL细胞免疫反应过程中的生物力,及其与微丝动态形变的关联

图3.原代鲑鱼角质细胞迁徙过程中的微小位移的观测结果,2D-TIRF-SIM能清晰观测到旋涡状的作用力产生过程
你可能感兴趣的文章:
- 美国橡树岭实验室开发带有”化学透镜”的显微镜
- 我国学者研制出可观测原子图像的“防震”显微镜
- 科学家开发出Piccope新型光学显微镜,可看到晶体原子中的电子
- 研究人员开发一种提高原子力显微镜成像技术的新方法
- 香港大学开发光纤激光显微镜为分析细胞分子和临床应用带来突破性进展
- 韩国COXEM公司推出新型台式显微镜EM-30N
- 伊利诺伊大学新研究推动了光学显微镜的发展
- 普渡大学开发的超高分辨率显微镜取得巨大突破
- 冷冻电镜新研究:利用廉价技术制作高分辨率图像
- 全球首个商业化3D病理组织影像系统
- 科学家在太赫兹成像技术取得新突破:开发低成本单像素太赫兹相机成像速度提升了100倍以上
- 科学家开发一种新型矩阵超声成像方法极大提高了分辨率
- 科学家借助冷冻电镜获得了迄今最清晰的蛋白质图像
- 哈工大在新型生物光学显微成像技术方向取得重要进展
- 世界上最小的成像设备可对血管内部进行3D扫描
- 全球首个商业化3D病理组织影像系统
- 光声成像探索深层组织:韩国科研团队用镍基纳米粒子开发一种低成本光声成像方法
- 研究人员利用Mesolens新成像技术发现细菌生物膜中新弱点
- 新的PET/MRI方法精准定位慢性疼痛位置,改变治疗方式
- 基于人工智能AI的增强医学超声应用
- 研究人员利用自动3D神经映射解开复杂的大脑网络
- 新型光场显微镜高速记录大脑神经元活动和血流的快速动态变化
- 我科学家首次实现亚分子分辨的单分子光致荧光成像
- 大连化物所利用自由能差指导开发超分辨成像自闪荧光染料
- TinyArray成像仪:UCI科学家开发了低成本、精准COVID-19抗体检测平台
- 韩研究团队成功开发能够感知短波红外线的硅光传感器
- 俄罗斯科学家研发出一项产生红外光电探测器矩阵的新技术
- 中国科大实现肿瘤光热治疗和疗效实时成像评估
- 打破常规!利用CCD相机实现中红外成像
- 研究人员用高灵敏光声纳米探针实现分子水平非侵入性成像动脉粥样硬化斑块
- 新的X射线显微镜技术可对密集神经回路全面成像为深入了解大脑结构开辟新途径
- 只要130元!人人用得起的实验室级机器人显微镜
- 合肥研究院研制出高场磁体中可旋转磁力显微镜
- 物理学家开发新型超高分辨率荧光显微镜
- 科学家开发开源光学工具箱几百欧元制造的显微镜可与商业显微镜媲美
- 深圳先进院等在双光子显微成像技术研发中取得进展
- 北大研究人员开发基于点击化学的膨胀显微成像技术
- 深圳先进院等在低剂量光声成像研究中取得进展
- 西安交大科研人员在高分辨成像领域取得重要进展
- 科学家开发出深度学习超分辨显微成像方法
- 松下开发一种新型红外医学成像投影系统可将实时图像投射到患者身上
- 开创性新技术可能会彻底改变超分辨率成像系统
- 高分辨率成像技术以无损方式和纳米精度研究材料更清晰地看半导体内部
- 活细胞RNA中的超高分辨率成像
- 深研院在卤化钙钛矿材料制备及其钙钛矿X射线探测器成像领域取得突破性进展
- 基于光遗传工程化细胞的类生命视觉感知成像器件
- 苏州医工所等在多频超声内窥镜研究中取得进展
- 科学家发明了一种新型光学显微镜成像技术,可以穿透完整头骨
- 科学家研发手持式伽马射线成像设备可加快癌症诊断
- 纳米表面声子首次实现三维成像
- 研究人员在超分辨显微镜研制领域取得进展
- 德国诺奖科学家突破STED显微镜极限