
康奈尔大学的科研人员开发了一种名为超分辨率成像耦合反应方法(CREATS)的新型合成聚合物光学测序技术。这项技术结合了超分辨率成像和荧光反应,能够以前所未有的精度确定合成聚合物的单体序列。这一突破对于材料科学非常重要,为理解和设计具有特定特性的聚合物材料提供了一个强大的新工具。

美国橡树岭国家实验室(Purdue University)的研究人员通过原子力显微镜(atomic force microscopy,AFM)探测隐藏的材料,不仅实现了原子和分子单粒子尺度上对材料表面特性的探测,而且实现了材料内部的高分辨率成像。

香港大学教授张霜-张翔院士团队与中国科学院国家纳米科学中心研究员戴庆团队以及John Pendry团队合作提出了一种实用的解决方案,借助多频率组合的复频波方法激发来获得虚拟增益,进而抵消光学体系的本征损耗,获得更高质量的超透镜成像分辨率。为了验证此理论的有效性,合作团队分别从微波频段和光频段进行实验设计合成复频波的超透镜。

来自奥地利格拉茨大学的研究人员近日开发了一种新的测量和成像方法,可在不需要任何染料或标签的情况下解析小于光衍射极限的纳米结构。这种激光扫描显微镜新方法弥补了传统显微镜和超分辨率技术之间的差距,有朝一日或可被用来观察复杂样品的精细特征。

近日发表在《科学进展》杂志上的论文,麻省理工学院和哈佛大学的研究小组开发出一种双光子成像显微镜的改进版本,它可以让科学家更快地获得大脑内血管和单个神经元等结构的高分辨率图像。新技术或可促进生物学、神经科学的研究。

康奈尔大学研究人员发表在这一期的《科学》杂志上的一篇重磅论文中,科学家们报告说,以创纪录的放大了1亿倍的分辨率,获得具有皮米(万亿分之一米)精度的超高精度图像,从而最大限度地实际看到了原子。

核糖核酸(RNA)是各种基本生物学过程的关键。它可以转移遗传信息,将其转化为蛋白质或支持基因调控。为了更详细地了解其功能,海德堡大学和卡尔斯鲁厄技术学院(KIT)的研究人员设计了一种新型荧光成像方法,该方法可以对活细胞RNA进行前所未有的超高分辨率成像。