
在当今科技日新月异的时代,超导材料的研究一直是一个热门话题。超导材料具有在低温下电阻消失的特性,这使得它们在能源传输和强磁场应用方面具有巨大的潜力。然而,传统的超导材料往往存在一些局限性,比如对磁场的容忍度有限,或者在制造过程中成本高昂。因此,科学家们一直在寻找新的超导材料,以克服这些限制。

研究人员在世界上第一次成功地合成了室温超导体(K,127C),该超导体在环境压力下工作,具有改性的铅磷灰石(LK-99)结构。用临界温度()、零电阻率、临界电流()、临界磁场()和迈斯纳效应证明了LK-99的超导性。

《自然》刊登了南京大学研究人员的一项研究,他们论证罗切斯特大学 Ranga Dias 团队的室温超导研究无法重现。Ranga Dias 团队曾在 2020 年发表了一项类似研究,但之后因为在数据处理方面存在违规行为而被撤稿。

美国罗彻斯特大学的Ranga Dias团队声称成功研发出了在接近常压环境下工作的室温超导材料。如果这项成果真的可靠,那么常压下的室温超导技术几乎已经近在咫尺。这项成果本身也将成为21世纪以来最重大的技术突破之一。

来自宾夕法尼亚州立大学物理学家和材料科学家团队的最新发现,使实现室温超导的可能性向前迈进了一步。这一令人惊讶的发现包括:将一种名为硫化钼的二维材料与另一种名为碳化钼的材料分层。碳化钼是一种已知的超导体(电子可以在没有任何电阻的情况下流经材料)。即使是最好的金属,如银或铜,也会通过加热而损失能量,这种损耗使得长途输电的成本更高。

美国科学家在最新一期《科学》杂志上发表论文指出,他们利用DNA精确修改碳纳米管晶格,使晶格可以按需精确组装并按预期发挥作用,从而克服了室温超导体研制过程中此前被认为几乎无法逾越的障碍,有望催生出能彻底改变电子技术的室温超导体。

2015年,Nature刊文报道在硫化氢中发现了超过200K的超导转变温度,2018年,LaH10创造了260K的超导临界温度记录。理论研究预测,不同于含有S-H极性共价键的硫化氢,在含有氢团簇的金属氢化物中同样可以实现超过200K的超导转变,甚至是室温超导现象。尽管氢化物已成为实现室温超导的最有前景的材料之一,但在真正含有4f或5f电子的稀土金属氢化物中,未观察到近室温的超导现象,尤其是其复杂的电子结构和强关联效应鲜有研究。

纵观人类历史,开发掌握新材料对文明的发展产生了重大影响。天然石材、青铜和铁为整个时代命名。在20世纪20-30年代,聚合物时代开始了,从那时起,我们无法想象没有塑料和橡胶的生活。几十年后,硅技术脱颖而出,推动了电子和数字技术的最新发展。如今,科学家们正努力创造具有超自然特性的新型材料。参与”5-100″计划的俄罗斯大学的研究人员介绍了该领域的最新科研成果。

据国外媒体报道,美国罗彻斯特大学的工程师和物理学家利用氢气在极高的压力下压缩成简单的固体分子,首次创造出了在室温下具有超导性的材料。这项研究是由物理和机械工程助理教授兰加·迪亚斯(Ranga Dias)的实验室完成的,并在近日成为《自然》(Nature)杂志的封面故事。

来自纽约的一支物理学家团队,已经发现了一种可在室温下达成最佳效率的超导材料。研究团队在近日出版的《自然》杂志上称,他们成功地在高达 59℉(15℃)的温度下,让一种碳氢硫化合物表达出了超导的特性。不过这个长期追求的科学里程碑,仍有一个明显的短板 —— 需要在极端压力条件下才能实现。

目前全球信息科学和感知领域的量子研究显示出巨大的前景,有助于实现一系列新的国防应用。然而,从实验室向实际应用过渡的一个主要障碍是冷却和捕获原子以利用其量子特性所需的大量设备。为了应对这一挑战,DARPA开发可在常温下使用的量子技术

电流在超导体内能不受阻力的影响,可以100%传递电能,不损失能量也不产生废热。如果能在室温实现超导体,将是一个颠覆性技术。美国海军发表了一份关于室温超导体的专利。不同于其他同性质的专利,它并不着重于任何化学配方,而是描述一个能产生超导的物理机制。尽管专利内并没有实验数据佐证,其提出的方法可信度非常高。

宾夕法尼亚州立大学物理学家和材料科学家团队的最新发现,使实现室温超导的可能性向前迈进了一步。这一令人惊讶的发现包括:将一种名为硫化钼的二维材料与另一种名为碳化钼的材料分层。碳化钼是一种已知的超导体(电子可以在没有任何电阻的情况下流经材料)。即使是最好的金属,如银或铜,也会通过加热而损失能量,这种损耗使得长途输电的成本更高。

随着全球化时代的到来,对数据存储和处理的需求呈指数级增长,这就需要能够更有效地存储和处理数据的新材料。休斯敦大学发现一种新材料为下一代数据存储提供了新途径