面向人工视觉的碳纳米管光电传感器阵列问世
视觉系统对生物体的生存和竞争都必不可少。在视觉信息处理过程中,在大脑视觉中枢做出复杂行为判断之前,视网膜在对光刺激信号进行检测的同时,并行处理所捕获的图像信息。开发人工视觉系统的挑战是双重的,既要重新创建动物系统的灵活性、复杂性和适应性,又要通过高效率计算和简洁的方式来实现它。目前的人工视觉系统往往采用传统的互补金属氧化半导体(CMOS)或者电荷耦合器件(CCD)图像传感器与执行机器视觉算法的数字系统相连接来实现,这些传统的数字人工视觉系统具有功耗高、尺寸大、成本高等缺点。相比而言,人类视觉系统拥有很多带有突触的视神经元,它们不仅能够探测图像信息,还可以存储信息和处理数据,因此能平行地处理大量的信息,而每个突触活动所耗费的能量仅为1-100飞焦耳。因此,将图像感测、存储和处理功能集成到器件的单一空间,并针对连续模拟亮度信号实时处理不同类型的时空计算,对实现神经形态人工视觉系统意义重大。具有神经形态的光电传感器通过模拟电子电路,实现由生物系统启发的特殊视觉处理功能,这些电路特别适合于尝试模仿生物视觉系统的构建。
近期,中国科学院金属研究所科研人员与国内多家单位的科研团队合作,开发出一种柔性碳纳米管-量子点神经形态人工视觉芯片,研究成果于3月19日在《自然·通讯》(Nature Communications)在线发表,题为“面向神经形态视觉系统的柔性超灵敏光电传感阵列(A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems)”。
为了构筑高性能的神经形态视觉系统,必须首先获得具有超高响应度、探测性和信噪比的光电传感器。为了在极端昏暗的光线条件下实现增强的成像能力,科研人员设计并制备了一个1024像素的柔性光电传感器阵列,使用半导体性碳纳米管和钙钛矿量子点的组合作为神经形态视觉系统的有源敏感材料,集成了光传感、信息存储和数据预处理等功能,成功实现了视觉图像强化学习过程。这两类材料都具有优异的柔韧性、稳定性及工艺兼容等特点,通过材料组合为实现兼具生物体灵活性、复杂性和适应性的神经形态人工视觉传感器提供了新策略。这也是第一次通过高集成度物理器件阵列方式,实现超弱光脉冲(1μW/cm2)响应,并完成神经形态强化学习的案例。与生物系统行为类似,光电传感器、存储元件和数据分析处理等组件在阵列中共享物理空间,并实时并行处理信息,这些结果对于试图模仿生物视觉处理的人工视觉系统具有重要的启发意义。
该研究计划得到了国家自然科学基金、国家重点研发计划、中科院先导项目和沈阳材料科学国家研究中心等项目支持。 获取更多前沿科技 研究访问:https://byteclicks.com

碳纳米管-量子点神经形态人工视觉光电传感器。a. 人工视觉芯片外观图(标尺,5 mm);b. 1024像素传感器阵列光学照片(标尺,0.5 mm);c. 单元像素的光学照片(标尺,20μm); d. 人类视觉皮层针对不同人脸形成的差异性印象的示意图;e. 初始状态以及在10、20、50、100和200个光脉冲训练后数字“8”突触权重结果。其中,激光波长405nm,激光功率密度 1μW/cm2,光脉冲宽度250ms,脉冲间隔250ms;f. 初始状态以及在4.0μW/cm2, 0.3mW/cm2, 1.0mW/cm2, 2.5mW/cm2 和 4.0mW/cm2功率密度下训练10个光脉冲后数字“8”的突触权重结果。其中,激光波长405nm,光脉冲宽度250ms,脉冲间隔250ms;g. 人类面部(论文第一作者)的识别训练过程模拟。