
近日,复旦大学物理学系晏湖根教授课题组首次在新型二维关联金属材料二硒化钽(2H-TaSe2)中观测到了局域等离激元,其共振频率覆盖了从太赫兹到近红外通讯波段极宽的光谱范围。
近日,复旦大学物理学系晏湖根教授课题组首次在新型二维关联金属材料二硒化钽(2H-TaSe2)中观测到了局域等离激元,其共振频率覆盖了从太赫兹到近红外通讯波段极宽的光谱范围。
自2004年石墨烯被分离以来,二维材料得到了前所未有的发展,并且在磁、电、力和光学等领域展现了许多奇异的特性。然而,二维磁性材料的合成与分离主要困难在于设计配体形成层内磁相互作用,同时阻隔层间磁相互作用。另一方面,具有特定拓扑结构和自旋阻错特性的二维材料一般会表现出奇异的磁学性质,如基于六边形衍生的Kagomé格子或蜂窝格子。
偏振光电探测在医疗、环境等领域具有广泛应用,二维结构材料是实现该功能的重要物质载体之一。其中,二维有机—无机杂化铁电体不仅表现出强烈的结构各向异性,而且铁电自发极化形成的内建电场利于光生载流子分离,在偏振光电探测方面独具优势。然而,基于二维杂化光铁电半导体实现高效的日盲紫外光电探测仍然是需要解决的重要问题。
一个工程师团队创造了一种能够同时处理和存储数据的2D计算机芯片。根据发表在《自然》杂志上的一项最新研究,EPFL的工程师发明了一种新的计算机芯片,该芯片能够在单个电路中存储和处理数据。下一代计算机芯片由称为二硫化钼(MoS2)的二维材料组成,以前所未有的规模为节能电子产品打开了大门。
单元素二维材料,由于具有重要的物理性质以及在纳米电子器件中有较大的应用潜力而受到关注。硼烯(borophene)是指由硼元素构成的二维平面结构,理论上认为有着不输于石墨烯的优良物理特性如金属性、高机械柔性、高导热性等,且有可能具有狄拉克电子、超导等量子特性。由于硼原子相对于碳原子缺少一个价电子,使得硼原子之间的化学键较复杂,所形成的平面结构是以三角形密堆积晶格为基础的孔洞型结构,而根据孔洞不同的排列方式,导致多样化的硼烯原子结构。
随着光通信技术的发展,光纤已成为现代信息社会的重要支撑。非线性光纤作为一种特殊用途光纤,在新型光纤通讯技术中具有重要应用和发展前景,并在光波长转换、超快光纤激光和超连续激光等光物理基础以及器件研究等领域具有应用潜力。
近年来,与互联网连接的设备已经占领了一系列新领域,例如手腕,冰箱,门铃,汽车。但是对于一些研究人员来说,“物联网”的传播还远远不够。二维材料将成为万物互联的关键。
扭曲的二维材料实验发现电子的集体行为,据美国华盛顿大学官网近日报道,该校领导的研究团队报告称,精心构造的堆叠石墨烯表现出高度关联的电子特性,并且这种集体行为很可能与奇异的磁状态相关。
传统的三维半导体材料表面存在大量的悬挂键,可通过捕获和散射等方式影响和限制自由载流子的运动,因此,表面态的设计、制造和优化是提高三维半导体器件性能的关键因素。类似于三维半导体材料的表面态,单层二维材料(如二硫化钼和石墨烯)在边界原子的终止和重建可以产生边界态,这使二维材料产生较多独特的现象,并得到广泛应用。
二维材料独特的物理、化学、电学和光学性质,令它们过去十多年成为国际间不同科学领域的研究热点。香港城巿大学科研人员继首次测试出“黑色黄金”石墨烯(graphene)的实际拉伸能力和工程强度后,今年之内再下一城,首次验证了另一种重要二维材料、别称“白色石墨烯”的六方氮化硼(hexagonal boron nitride, h-BN)在弹性方面的表现,并展示其出乎意料的强大抗缺陷能力。这项后续研究,有望推动未来h-BN应变工程、压电电子学和柔性电子学的发展和应用。
近日,中国科学院上海技术物理研究所研究员周靖、陈效双和陆卫团队提出了等离激元纳米谐振腔非对称集成的石墨烯红外探测器件,揭示了该复合结构器件高对比度非对称光耦合的原理,验证了基于非对称光耦合突破金属-低维材料-金属探测结构的两大瓶颈问题,实现了泛光照射下显著的自驱动光响应,超越常规的等离激元耦合光栅1个量级。
过渡金属二硫组化合物是一大类被广泛研究的层状二维材料,其不仅在工业上有广阔的的应用前景,同时也蕴含丰富的凝聚态物理现象。北大课题组利用自行研制的ARPES系统,通过连续精密的变温实验,在相变附近的一个微小温度窗口中,发现了一个之前未被观测到的绝缘中间态
8月7日,中国科学院金属研究所沈阳材料科学国家研究中心先进炭材料研究部在新型二维材料方面的最新进展,以Chemical vapor deposition of layered two-dimensional MoSi2N4 materials为题,在线发表在Science上。
近日,北京大学化学与分子工程学院彭海琳教授课题组首次报道高迁移率二维半导体表面氧化成高κ栅介质并应用于高性能场效应晶体管器件和逻辑门电路,该研究工作突破了二维高迁移率半导体器件与超薄介电层集成这一瓶颈,有望推动二维集成电路的发展。
近来,二维(2D)半导体作为一种新型材料正在引起人们的关注,其大小与一个原子的厚度相当。理论上来说,2D材料在电子和光电子工业以及物联网设备中有着光明的应用前景。任何手机、电脑、电子设备,甚至太阳能电池,都是由相同的基本电子元件,即二极管组成的。二极管的核心基础p-n结的纳米制备一直是个未解决的挑战,这也是阻碍2D材料得到广泛应用的最主要因素之一。
托木斯克理工大学的科学家领导的一联合研究团队开发了一种新型二维材料生产氢气,通过暴露在阳光下,该材料可以有效地从淡水,海水和污水中产生氢分子。这是一种高效绿色的光解水制氢方法。该成果发表在《ACS Applied Materials & Interfaces》上(IF:8,758;Q1)。
中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室研究员白雪冬课题组在过去二十年致力于发展高分辨原位综合物性测量系统,在透射电镜内构筑器件单元和微纳测量系统,在外场(力、热、电、光等)激励下,产生、观测和调控新物态与新物性。最近,基于像差矫正电镜技术和原位液相反应池技术,该课题组副研究员王立芬与合作者在新型二维结构的液相合成方法与生长机理研究方面取得新进展。