西安交大合作研究团队在无机塑性半导体领域取得重大突破

近日,西安交大材料学院单智伟教授团队与上海交通大学、中国科学院上海硅酸盐研究所等单位合作,在无机塑性半导体领域取得重大突破。该研究发现,二维结构范德华半导体InSe在单晶块体形态下具有超常规的塑性和巨大的变形能力,既拥有传统无机非金属半导体的优异物理性能,又可以像金属一样进行塑性变形和机械加工,在柔性和可变形热电能量转换、光电传感等领域有着广阔的应用前景。

当前,柔性电子领域蓬勃发展,推动着社会的信息化和智能化进程。作为柔性电子器件的核心,半导体材料期望具有良好的电学性能与优异的可加工和变形能力。然而,现有的无机半导体尽管电学性能优异,但通常具有本征脆性,其机械加工和变形能力较差;而有机半导体虽具有良好的变形能力,但电学性能普遍低于无机材料。开发兼具良好电学和力学性能的新型半导体有望推动柔性电子的迅速发展。

对二维材料而言,单层或薄层样品很容易发生弹性变形,表现出一定的柔性;然而,当厚度增大时,二维材料通常因其较弱的层间作用力极易发生解理,因此块体形态下的变形能力很差。

图1. InSe单晶块体的超常塑性。(A)晶体结构;(B-D)样品可折叠或弯曲成“纸飞机”、莫比乌斯环、螺旋圈等各种形状而不破裂;(E)沿c轴与(F)垂直c轴方向压缩的应力-应变曲线及压缩前后样品照片。

图1. InSe单晶块体的超常塑性。(A)晶体结构;(B-D)样品可折叠或弯曲成“纸飞机”、莫比乌斯环、螺旋圈等各种形状而不破裂;(E)沿c轴与(F)垂直c轴方向压缩的应力-应变曲线及压缩前后样品照片。

该研究发现,不同于多晶形态下的脆性行为,InSe单晶二维材料在块体形态下可以弯折、扭曲而不破碎,甚至能够折成“纸飞机”、弯成莫比乌斯环,表现出罕见的大变形能力。非标力学试验结果进一步证实了材料的超常塑性,其压缩工程应变可达80%,特定方向的弯曲和拉伸工程应变也高于10%。

图2 InSe塑性变形机制与机理。(A)刃位错的反傅里叶变换扫描透射暗场像(IFT-DF-STEM);(B-C)扫描电镜(SEM)下原位压缩实验,揭示了层间滑动与跨层滑移;(D)常见六方结构二维材料的面内杨氏模量;(E)滑移能与解理能;(F)差分电荷密度与(G)晶体轨道哈密顿分布密度(COHP),间接佐证了层间长程作用力的存在。

图2 InSe塑性变形机制与机理。(A)刃位错的反傅里叶变换扫描透射暗场像(IFT-DF-STEM);(B-C)扫描电镜(SEM)下原位压缩实验,揭示了层间滑动与跨层滑移;(D)常见六方结构二维材料的面内杨氏模量;(E)滑移能与解理能;(F)差分电荷密度与(G)晶体轨道哈密顿分布密度(COHP),间接佐证了层间长程作用力的存在。

相关成果以“Exceptional plasticity in the bulk single crystalline van der Waals semiconductor InSe”为题发表在《科学》(Science)上。该工作的通讯单位和第一作者单位为上海交通大学,微观力学测试与表征部分是由西安交大完成:材料学院单智伟教授团队的王悦存副教授为该工作的共同第一作者,单智伟教授为作者之一。史迅教授/研究员、Jian He教授、陈立东研究员为本文通讯作者;上海交大魏天然助理教授、上海电机学院金敏教授为共同第一作者。该工作得到了国家自然科学基金和国家重点研发计划等项目的支持。

上一篇:

下一篇:


标签